
Model Fitting Workshop: Part 2

reminder: plan

• Snap introduction to Bayes rule  

• Basic RL modeling & fitting the parameters of a model

• April: Model comparison
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• background papers: Niv & Schoenbaum (2008) - dialogues on prediction errors 
Niv (2009) - RL in the brain

• primary paper: Daw (2011) - trial by trial data analysis using computational models

• newer: Wilson & Collins (2018) - Ten simple rules for the computational modeling of behavioral data



Act III: Which model is best?

P(Model | Data) = ?

wwBd?

Which model is best? Model comparison



Bayes rule
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P(model |data) =
P(data |model) ⋅ P(model)

P(data)

likelihood priorposterior

marginalization (ignore!)

P (M1|D)
P (M2|D)

=
P (D|M1) · P (M1)
P (D|M2) · P (M2)

Bayes 
factor

Which model is best? Model comparison

P(Model | Data) = ?

wwBd?

Comparing two models:



P (M1|D)
P (M2|D)

=
P (D|M1) · P (M1)
P (D|M2) · P (M2)

Bayes 
factor

We prefer simple models
"Pluralitas non est ponenda sine necessitate”  
Plurality should not be posited without necessity – William of Ockham (1349)

we should go for the simplest model that explains the data

Comparing two models:

automatic Occam’s razor: 
simple models tend to make 

precise predictions

can put in preference for 
simple models here, but 

don’t need to...

P (D|M) =
�

d�P (D|M, �) · P (�)

assuming uniform prior over models all we care about is P(D|M)

P (M1|D)
P (M2|D)

=
P (D|M1) · P (M1)
P (D|M2) · P (M2)

Bayesian evidence for 
model M (marginal 
likelihood)

Which model is best? Model comparison



Occam’s razor at work: model evidence

P (D|M) =
�

d�P (D|M, �) · P (�)

• Integrating over all settings of the parameters is, in most cases, too hard...

• Approximate solutions:

1. sample posterior at many places to approximate integral and compute 
Bayes factor directly

2. Laplace approximation: make Gaussian approximation around MAP 
parameter estimate �̂



P (D|M) =
�

d�P (D|M, �) · P (�)

• Integrating over all settings of the parameters is, in most cases, too hard...

• Approximate solutions:

1. sample posterior at many places to approximate integral and compute 
Bayes factor directly

2. Laplace approximation: make Gaussian approximation around MAP 
parameter estimate

3. BIC approximation: if N is large, can drop whatever doesn’t grow with 
the amount of data

�̂

lnP (D|M) ⇥ lnP (D|�̂,M)� d

2
ln(N)

• For each model, compute the maximum log likelihood and add to that a penalty 
that depends on d (# of parameters).

• Compare the results between the models 

lnP (D|M) ⇥ lnP (D|�̂,M)� d

2
ln(N)

• Advantages: easy to compute; can use ML rather than MAP estimate  
(i.e., don’t care about prior on parameters)

• Disadvantage: can overpenalize as it is hard to determine d (only identifiable 
parameters) and N (only samples used to fit parameters; note: not necessarily same 
for different parameters)

BIC approximation



P (D|M) =
�

d�P (D|M, �) · P (�)

• Integrating over all settings of the parameters is, in most cases, too hard...

• Approximate solutions:

1. sample posterior at many places to approximate integral and compute 
Bayes factor directly

2. Laplace approximation: make Gaussian approximation around MAP 
parameter estimate

3. BIC approximation: if N is large, can drop whatever doesn’t grow with 
the amount of data

4. (W)AIC approximation: ranks models by penalizing by # parms

5. Likelihood ratio test (for nested models)

�̂

Likelihood ratio test
• For nested models (one is a special case of the other)

• Compares hypothesis H1 to one where some parameters are fixed, H0

• Statistical test on the likelihood differences: compare 2*difference in log likelihood (ML) 
to χ2 statistic with df=#additional parameters



Holy grail: cross validation

• Fit models on training set and 
validate fit on hold-out set. 

• Problem: often hard to find i.i.d. 
data sets in a learning setting

Summary 

• Learning models are detailed hypotheses about trial-by-trial overt and covert variables 

• trial-by-trial model fitting lets us test these hypotheses 
...and compare alternatives

• special premium on detailed model fitting when considering learning data:  
non-stationary, can’t use traditional averaging techniques



• We’ve discussed modeling each subject separately (each have different parameters).  
Alternatives?

• Population level fit: assumes subjects all have the same parameter

• Hierarchical fit: learn distribution over parameters from population  
(use population as constraints on individual fits)

• And: does each subject have to have one parameter value throughout the experiment?

• Examples to the contrary?

• What can you do about this?

Modeling trial-by-trial data: last thoughts 

• BEFORE running an experiment:

• Simulate data from your favorite model

• Fit the model to the data: do you get the parameters you put in the simulation? If not, 
what can you do?

• Compare to other models: do the data identify your model correctly? If not, what can 
you do?

Some more practical tips:

• background papers: Niv & Schoenbaum (2008) - dialogues on prediction errors 
Niv (2009) - RL in the brain

• primary paper: Daw (2011) - trial by trial data analysis using computational models

• newer: Wilson & Collins (2018) - Ten simple rules for the computational modeling of behavioral data



The only stupid question is the one you did not ask
-Rich Sutton


