Model Fitting Workshop: Part 2

“Hey, no problem!”

reminder: plan

Snap introduction to Bayes rule
Basic RL modeling & fitting the parameters of a model

April: Model comparison

background papers: Niv & Schoenbaum (2008) - dialogues on prediction errors
Niv (2009) - RL in the brain

primary paper: Daw (201 1) - trial by trial data analysis using computational models

newer:Wilson & Collins (2018) - Ten simple rules for the computational modeling of behavioral data




Act lll: Which model is best!?

Which model is best! Model comparison

P(Model | Data) =?
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Bayes rule
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marginalization (ignore!)

Which model is best! Model comparison

P(Model | Data) = ?

wwBd?

Comparing two models: P(My|D) _ P(D[My) - P(Mi)  [Bayes

P(M,|D)  P(D|Ms) - P(Ms) factor




We prefer simple models

"Pluralitas non est ponenda sine necessitate”
Plurality should not be posited without necessity —William of Ockham (1349)

we should go for the simplest model that explains the data

Comparing two models: P(My|D) _ |\P(D[My)}[P(M)
factor

P(M,|D) ~ |P(D|Ma)[[[P(5)

automatic Occam’s razor: can put in preference for
simple models tend to make simple models here, but
precise predictions don’t need to...
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Which model is best! Model comparison
P(My|D)  P(D|M) - P(My)

P(M,|D)  P(D|Ms) - P(Ms)

assuming uniform prior over models all we care about is P(D|M)

model M (marginal

P(D|]\[> = /dQP(D’]W, 9) -P(@) Bayesian evidence for
likelihood)




Occam’s razor at work: model evidence

Model Evidence

P(D|M) = / dOP(D|M, 0) - P(6)

Integrating over all settings of the parameters is, in most cases, too hard...
Approximate solutions:

|. sample posterior at many places to approximate integral and compute
Bayes factor directly

2. Laplace approximation: make Gaussian approximation around MAP
parameter estimate ()




P(D|M) = / d9P(D|M, 8) - P(9)

Integrating over all settings of the parameters is, in most cases, too hard...

Approximate solutions:

|. sample posterior at many places to approximate integral and compute
Bayes factor directly

2. Laplace approximation: make Gaussian approximation around MAP
parameter estimate ()

3. BIC approximation: if N is large, can drop whatever doesn’t grow with
the amount of data

A d
InP(D|M) ~ InP(D|9, M) — SIn(N)

BIC approximation

InP(D|M) ~ InP(D|8, M) — gln(N)

* For each model, compute the maximum log likelihood and add to that a penalty
that depends on d (# of parameters).

* Compare the results between the models

* Advantages: easy to compute; can use ML rather than MAP estimate
(i.e.,don’t care about prior on parameters)

* Disadvantage: can overpenalize as it is hard to determine d (only identifiable
parameters) and N (only samples used to fit parameters; note: not necessarily same
for different parameters)




P(D|M) = / d9P(D|M, 8) - P(9)

Integrating over all settings of the parameters is, in most cases, too hard...

Approximate solutions:

|. sample posterior at many places to approximate integral and compute
Bayes factor directly

. Laplace approximation: make Gaussian approximation around MAP
parameter estimate ()

. BIC approximation: if N is large, can drop whatever doesn’t grow with
the amount of data

4. (W)AIC approximation: ranks models by penalizing by # parms

. Likelihood ratio test (for nested models)

Likelihood ratio test

For nested models (one is a special case of the other)
Compares hypothesis H| to one where some parameters are fixed, Ho

Statistical test on the likelihood differences: compare 2*difference in log likelihood (ML)
to X2 statistic with df=#additional parameters




Holy grail: cross validation
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Fit models on training set and
- 0 0 0 validate fit on hold-out set.
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data sets in a learning setting

Summary

Learning models are detailed hypotheses about trial-by-trial overt and covert variables

trial-by-trial model fitting lets us test these hypotheses
...and compare alternatives

special premium on detailed model fitting when considering learning data:
non-stationary, can’t use traditional averaging techniques




Modeling trial-by-trial data: last thoughts

We've discussed modeling each subject separately (each have different parameters).
Alternatives?

* Population level fit: assumes subjects all have the same parameter

* Hierarchical fit: learn distribution over parameters from population
(use population as constraints on individual fits)

And: does each subject have to have one parameter value throughout the experiment?
Examples to the contrary?

What can you do about this?

Some more practical tips:

BEFORE running an experiment:
 Simulate data from your favorite model

* Fit the model to the data: do you get the parameters you put in the simulation? If not,
what can you do?

» Compare to other models: do the data identify your model correctly? If not, what can
you do!?

background papers: Niv & Schoenbaum (2008) - dialogues on prediction errors
Niv (2009) - RL in the brain

primary paper: Daw (201 ) - trial by trial data analysis using computational models

newer:Wilson & Collins (2018) - Ten simple rules for the computational modeling of behavioral data




The only stupid question is the one you did not ask
-Rich Sutton




